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When analyzing shells of complicated shape (reservoirs, boilers, etc.) 
it often becomes necessary to break them up into several simpler parts. 

In such cases the use of the complex representation El] meets with 
difficulties arising out of the necessity to separate the real and 
imaginary parts when the solutions are coupled together. 

In some special cases [l 1 complex combinations of the unknown 
quantities were proposed so that it was possible to avoid these diffi- 
culties. 

In the present paper the complex coupling conditions of the general 
form are derived as the natural boundary conditions of the proposed 
variational problem. 

The notion of a complex energy is introduced, and the minims property 
of its modulus is demonstrated. 

‘Ibe middle surface of the shell will be referred to the lines of 
principal curvature (a,, a,), and for the sake of brevity it will be 
assumed that the region of the change of the coordinates of the middle 
surface S is bounded by some arbitrary closed line of curvature, ai = aI 

= const. for example. It will be also assumed that Poisson’s ratio p is 
zero. 

Ihen, the generalized Hooke’s law relates the forces and moments to 
the displacements of the middle surface u, u, w in the well-known 
fashion [ 1 1 : 

Generalizing the notion of the Lur’e-Goldenveizer functions 12, 3 1 
to the case of the non-homogeneous problem of shell theory, functions of 
stress, a, b, c, will be introduced by then following relations: 
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T, = T1* + Ehcox, (a, b, e), M, == MI* - Ehes, (a, b, C) 

T, = [I’** + Ehc,,q (a, b, e), M2 = MI* - Eheor, (u, b, c) (2) 

s = S’ --. Etrc,,r (a, b. c), H =H*+Ehco + o (u, b, c) 

Here h = const is the shell thickness, co2 = l/12 h*, while the de- 
formations are expressed in terms of the displacements of the middle sur- 

where 

are the angles of rotation of the respective tangents to the coordinate 
lines a1 and a2 around the directions shown in Fig. l., 

1 a+ 1 aA, 1 as 1 aA. 
~1===&-7&7&%+ 

--I 
2 r*~~&g-A,~, aal J, 

and A,, A,, R4, R, are Lame’s constants and the principal radii of curva- 
ture of the middle surface, respectively. A certain solution of the 
equilibrium equations (a statically allowable set of functions) is chosen 
as a set of functions (T,*, T,*, S*, M,*, If,*, PI. The following complex 
combinations are called Gompldx forces: 

I 

I 
% 

Fig. 1. 

‘Ihey satisfy the following system of equations on complex forces 
” 

ari, T, _t -1 aA12SY aAp -- 
aal A, as% - al, Tz”+ 

El]: 

(5) 
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where 

'Ihis system is equivalent to the aggregate of the sets of the equi- 

librium and continuity equations of the middle surface. lhis can be 

easily shown by separating the real and imaginary parts. 

Complex displacements are introduced by the relations: 

U"=U+ia, u"= vi_%, u;'=wfit (61 

When the complex co~inations of the corresponding equations of systems 

(1) and (2) are constructed, a relation between the complex forms and 

displacements is obtained: 

T;=: T,* - iEhc,-,x,“(u:v~ w’ ), 
\_ ""V 

T,“-f - -&M,’ + E‘hq (u, v, w ) 

Finally, eliminating from here the complex forces T1-, Tz", S", a set 

of equations on the complex displacements is obtained: 

If the general solution of the membrane theory CTl*, T2*, S?) is 

chosen as the set of functions (T1*, Tz*, S*, Ml*, M2*, H*) then sets (71 

and (8) will coincide with analogous sets proposed by Novozhilov. 

Four complex quantities are to be associated with each point of the 

boundary (a, = alo): 
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‘T;, v’ 
2s’ v, iCCr 

Tlz = S’-ico-jg-, N1 =- 
AlAz 

i9AaT; _ 2 aA$’ aA% ’ 
-- 

aa, aa 
KT1I 

1 1 

MC = icOT: (9) 

Separating out in the reduced complex expressions the real parts, the 
following values are obtained: 

These, however, are the boundary forces generalized according to 
Kirchhoff (see [ 11, p. 551. 

‘lhe imaginary parts of the expressions in (9) are: 

In order to explain the geometric meaning of the quantities “2s “iI, 

r;, 62 they shall be changed somewhat. Substituting into the third 
relation the expressions 
aid of the Codazzi-Gauss 

for the deformations (31 one obtains with the 
relations 

Furthermore, r = r 2 + 

9 I a0. - ..-...z 
h = Rz + At as, 

y/f$, a= aI + 02; hence 

02 
x2it = s2 - Ry 

‘l’hus there are four quantities fixed at the neutral line: 

9 1 awz 
%I x2&2' = fiz + Ayz f 

% 
2 

x21' = T*--- - 
R2 

fW 

It will be shown that the fixing of these quantities completely deter- 
mines the deformation of an element of the boundary. Isolate for that 
purpose an element of the boundary, connected with an element of the arc. 

First of all it is clear that c2 gives the relative elengation of the 
neutral line, and K~ gives its curvature in the plane of the diagram. 

The curvature in the direction perpendicular to the plane of the dia- 
gram will be found by determining it as the limit of the ratio of the 
difference of the angles at two adjacent points, measured from the same 
direction (e,), to the distance between them, i.e. by equating it to: 
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From Fig. 2 it can be seen that 

WZ” = (o,+~Aap)cosA3+(~+A~Aal)sinAS 

Because of the smallness of the angle A/? 

and 

02 Aat 

Substituting the resulting relation into equation (11) one obtains 

1 ao a + - a = &’ 31 = Rjj 4 aa% 

Thus the first three quantities determine deformations of an element 

of the neutral line. Furthermore, t 1 1 , 

,,(rf _ 02 + =a 
-~-l-z/& 

WY~_tZ T*-% 
c ,> 

From this it is evident 

change of magnitude of the 

boundary element. 

that the fourth quantity characterizes the 

deflection angle CI+, , i.e. the twist of the 

Fig. 2. 

According to Kirchhoff’s kinematical hypothesis, however, the deforma- 

tion of the boundary element can be determined by just four quantities. 

Thus, the fixing of the imaginary parts of the complex expressions (9) 

completely determines the deformation of the boundary element. 

Assuming, as above, that the middle surface of the shell is bounded 

by a closed line of curvature aI - aI0 = const.it will be shown that the 

following variational equations can be postulated as the basis of the 

theory of shells: 
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In fact, integrating by parts the first integral, it can be easily 
shown that the system of equations on complex forces (51, which is equi- 
valent to the combination of the sets of equations of equilibrium and 
continuity of the middle surface, will appear as the Euler equations for 
(12). 

Using relations (?I, equation (I21 can be changed to 

W’- 
s 

(~~Bu’+T;2’6v’+IV~‘Gw’+M~8%’ A,da,- 
x*-a,* 

) 

-3 
fS 

(q+” + W’ -I- q,wv) AlAa&h = 0 

S 

Here the quantity 

can be called by anaiqgy the potential energy of the complex deformation, 
(note that the quantities ‘TI*, T2*# . . . , &*I are not being varied), 

Of course, there are also other possible forms of complex variational 
equations, reducing to one or another set of natural boundary conditions, 
ft should be noted that a peculiar minimum property of the potential 
energy of the complex deformation is in effect. 

Namely, the following takes place: 

For the actual complex displacements, i.e. for u, ZI,, W, which satisfy 
the system of equations on complex displacements (81, the potential 
energy of the complex deformation V approaches a minis value tin modulusf, 

Actually, Y can be written as follows: 
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Eh 
V’=-y 

sst 

1 
E; + icoxi-- oh TI* + cg 

S 
( 

LMz’)][sc- ice; +-j& (TI*----& MI*)] + 

+ [e< + icox; - & (Tam + -& M;)] [es” - iwi + & (Tz* - -& MI*)] + 

+ 2 [ $ -iq,‘- & (S* - *If)] [F +iCo7”+ jjjj (S* + y&H*)]} AiAadaldaz 

From this it can be seen that for uy, vy, tu", which satisfy the set of 

equations (81, VV= 0. 'Ihis then proves the minims property. 

As a first application, the variational equation will be used to ob- 

tain the complex coupling conditions along a line of curvature of two 

shells of the same thickness. 

J.&. two shells be coupled along line 2. Assign the plus sign to all 

quantities relating to the first shell, and the minus sign to all 

quantities relating to the second shell, and take the following varia- 

tional equation: 

ss 
CTI’+GE~+~T~V+~~~~~+S+BW~~ +icoT~+Gx~++icoT~+~n~+-icJSY+Fi~+~)A~+A~+du~+da+8- 

s+ 

- 
ss 

{ql+F_&+” + qa%+” + q,+8w+Vf Al+Az+daI+daz+ + 

St 

+Sk 
T~~~E~“~+T~~~~~“~+S”~BW~*+~C~T~“~ 6x1-‘+icoT-~Gx~-‘-icoS’-S~~‘-)A~-- 

s- 

-A,-daI-daz-- 
ss ’ {Ql-h2” + qn-6v’- + q,-6w ” -} A,-A,-dal-daz-= 0 

S- 

This equation differs from equation (12) by the fact that here the 

integrals along the boundaries of regions 4 and S (al+ =: alqo, aI- = 

“1 -‘I, corresponding t o the line of elastic coupling I, are missing. As 

above, integration by parts yields the particular Euler equations for 

each region. Beside that, the following integral coupling conditions will 

hold along the line of coupling: 

+ \ {T;-6u- ” -I.- T&'+&r ’ +N; ‘-aw ., -+ M; -88,” -j :I,-daz- = 0 (13) 
oL1-- a,-oa 

Let AZ and A: be the components of a complex displacement along any 

two mutually perpendicular directions, lying in a plane that is perpendi- 

cular to the tangent to 1 fsee Fig.3): 
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6u+“= (el+, ez-) SA,‘+ (el+, e,)6A: 

8w+“= (en+, e,-) 8 Ai + (en++,) SA’; 

au-“= (el-, e,) 8Az + (el-, e$A”, 

6~~ =: (en-, e,) 6Ai + (e,-, e,P A”*, 
&)+” = -&-’ = 6V* 

aa+v = _-a-” = 69’ 
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Substituting these relations into (13) and noting that A2+da2+= 
AZ-da,‘= ds, one obtains 

s 

& uI+ 

CCC;'+ - Q;'-)SA;+(Q;+-Q;'-)&'A;+ (T,zV’+ - ‘- 
u* 

e 
- T;,‘-) 8v + (M;+ - Ml-) 69) dsz = 0 

c; 
es e,:, 7$ m- 

*if’ 
where 

Q,‘+= (el+, e,) Ti++ (e,,+, e_J Ni ‘+ 

“‘+ 
Q* = (el+, ez) Ti++ (e,+, eJ NC ‘+ 

- Q,* ‘- = (el-, ex) TI-+ (en-, ex) NT ‘- 

- Q; ‘- = (el-, ez) Ti-+ (e,-, eZ) Nl’-” Fig. 3. 

By virtue of the arbitrariness,of the variations 6 AzV, 6 A z”, 6v ‘; 68 
the natural complex coupling conditions are obtained: 

Q;" = Q;'-, T&‘+ = T&'-, Q;" = Q;'-, M;+=M;- (14) 

‘Ihe above statements are illustrated by the following example. 

Two symmetrically loaded shells of revolution of equal thickness 
coupled along a general parallel circle will be investigated. In this 
case (see Fig. 4 and Ref. 1, p. 241), (in Figs. 3 and 4 the superscript 
Yhas been omitted): 

al+ = 0, aI- = - 8, a2- = (P, a2- = - ‘p 

Al+ = RI+ = RI+ (e), A,+ = (R, sin e)+ = r (f3) 

Ai- = RI- = RI+ (e), AZ- = (Rz sin 9)- = r (0) 

Assuming that the shell does not undergo torsion, one obtains 

VI+= v-‘=T;~+=T;~-~O 

The relations (14) in the given case are written as 
Q;+=Q;-, Q;+=Q;-.M;+=M;- 

(15) 

Here, as can be seen from Fig. 4: 

Q,'+ = cos fJ+T;++ sin O+N;+, Q;-= cos 0-T1’ -sin e-N;- 
Qr+ = - sin fJ+T{+ + cos fJfNl+, Qi- = -sin tl+T’-- cos 0-N;- (16) 
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Note that here the quantity Q, Vdiffe~s in sign from the one introduced 

in El]. From Fig. 4 one can also see that the real parts of AZ', AZ", 
QXVt 0, "in this case are the horizontal and vertical displacements and 
forces, respectively, 

Fig. 4. 

To explain the statically-gecxnetric meaning of conditions (15) obtain 

from (3) and (10) 

ucosfJ-+wsin0 Aa: case 
Ez== --a= 

&sin8 =F’ x2 -RzsmB 

From this 

Substituting the first two of these relations into (16) one obtains 

Qv, = Qzg Q; = Q, - i Ehc, p 

M l=ikfl+iEhco~ 

Inasmuch as h+ = h- = h, it can be easily seen from the relations 

given above that the coupling conditions (14) are equivalent to the 

requirement for the continuity of the five real quantities Q,, Q,, if,, 
Axe 8 along the line of contact. 

'Ihe value Q, usually is determined from the equilibrium condition of 
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the shell as a whole. The second and third complex equations can be used 

to determine the complex constants (solutions) without having to separate 

them into real and imaginary parts. 

The conditions Qxv’ = Qzv-, Ml”’ = Ml”- were found previously by 

matching. 

Everything that was said here can be generalized without any particular 

difficulties to the case of a Poisson’s ratio ~1 other than zero and to 

shells whose middle surfaces have boundaries that do not coincide with 

lines of curvature. 
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